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Abstract. Recent works on text-based localization of moments have shown high
accuracy on several benchmark datasets. However, these approaches are trained
and evaluated relying on the assumption that the localization system, during test-
ing, will only encounter events that are available in the training set (i.e., seen
events). As a result, these models are optimized for a fixed set of seen events and
they are unlikely to generalize to the practical requirement of localizing a wider
range of events, some of which may be unseen. Moreover, acquiring videos and
text comprising all possible scenarios for training is not practical. In this regard,
this paper introduces and tackles the problem of text-based temporal localiza-
tion of novel/unseen events. Our goal is to temporally localize video moments
based on text queries, where both the video moments and text queries are not
observed/available during training. Towards solving this problem, we formulate
the inference task of text-based localization of moments as a relational prediction
problem, hypothesizing a conceptual relation between semantically relevant mo-
ments, e.g., a temporally relevant moment corresponding to an unseen text query
and a moment corresponding to a seen text query may contain shared concepts.
The likelihood of a candidate moment to be the correct one based on an unseen
text query will depend on its relevance to the moment corresponding to the se-
mantically most relevant seen query. Empirical results on two text-based moment
localization datasets show that our proposed approach can reach up to 15% abso-
lute improvement in performance compared to existing localization approaches.
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1 Introduction

Event localization in a long and untrimmed video is an important video analysis prob-
lem. Recently, there has been a surge of works that address the task of temporal ground-
ing of text/sentence in untrimmed videos [3} [12} 29/ 136 [71}, [74]. Most of these works
utilize a set of fully supervised training data containing videos, text descriptions, and
temporal boundary annotations. These works try to optimize over a fixed set of events
and queries (which we call seen events and seen queries) that are available during train-
ing. However, in a real-world dynamic environment, a system is expected to encounter
previously unseen events and queries, as shown in Figure[] and is required to localize
corresponding moments based on unseen text queries in the videos. As a result, a sys-
tem optimized over a fixed set of events is unlikely to generalize and perform well for
unseen events. Moreover, as textual annotations are expensive and time consuming [35]],
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Fig. 1. Example illustration of our proposed task. We consider the task of localizing novel mo-
ments for unseen queries. The set of verbs and nouns present in the testing set is absent in the
training set, e.g., training data does not have any text with verb ‘walk’ or noun ‘doorway’. Hence,
the system is required to learn transferable knowledge from the training data to perform localiza-
tion for novel events based on unseen queries.

it is impossible to collect videos of all possible events and textual descriptions and learn
models with the collected data. Hence, the applicability of current text-based temporal
localization systems are severely limited to a small set of events and the problem of
localizing novel/unseen events based on unseen text queries remains unaddressed in the
current literature.

In this work, our goal is to temporally localize video moments based on text queries,
where both the video moments and text queries are not observed/available during train-
ing. Towards this goal, we learn transferable knowledge from seen events and queries
and utilize it to localize novel/unseen events. We hypothesize that temporally relevant
moments corresponding to unseen text queries and those corresponding to seen text
queries are likely to contain shared concepts, if the unseen query and the seen query
are semantically relevant. For instance, in Figure [T moment corresponding to the un-
seen text query ‘They punch and kick at each other’ from the testing set has similarities
to the moment corresponding to seen text query ‘They are doing karate moves on the
floor’ from the training set. Therefore, instead of localizing moments only based on
its encoded representation, we formulate the inference task of localization as a rela-
tional prediction problem. The likelihood of a candidate moment to be the correct one
based on an unseen text query depends on its relevance to the moment corresponding
to the semantically most relevant seen query. We term this moment corresponding to
the semantically most relevant seen query as the support moment. To learn a proper
relational system that can localize novel events, we simulate the support moment based
relational inference on the available training data during training. As a result, the sys-
tem learns to localize moments based on relational reasoning, instead of directly local-
izing based on observed moment representations. Our motivation behind the approach
is that a relational system learned on seen events/queries is transferable to the unseen
events/queries [54]. We term our approach as Temporal Localization using Relational
Reasoning (TLRR).
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Our problem is related to the zero-shot paradigm (where the objective is to adapt
models to perform different tasks on the unseen or unobserved classes) as we utilize
seen moment-text pairs to infer on the unseen events [26] 39, |64} 78| [87]. However,
those zero-shot approaches are not directly applicable to our problem setup. For exam-
ple, [79] assumes unseen classes are known in advance and uses the information to mine
common semantics for seen classes and unseen classes for zero-shot temporal activity
detection. However, text-based annotations of events are not limited to a fixed set of
classes and the unseen queries are not known beforehand. Again, [8| 27, [68] perform
retrieval across multiple modality data in the zero-shot setting. These works consider
images with specific classes, and utilize the word embedding space to transfer knowl-
edge between seen classes and unseen classes. However, in a video, textual descriptions
refer to multiple entities, interactions of multiple entities, and different activities in a
combined manner that is not expressible by a single class. As a result, directly utiliz-
ing label embeddings is not enough to transfer knowledge from seen events/queries to
unseen events/queries. We will demonstrate the advantage of our proposed TLRR ap-
proach over zero-shot approaches and other recent temporal localization approaches on
two benchmark datasets. The following are the main contributions of our work.

— We address a novel and practical problem of temporal localization of video moments
based on unseen text queries.

— We hypothesize a conceptual relation between semantically relevant moments and
propose a relational reasoning based temporal localization approach, TLRR, which
can learn transferable knowledge from seen events and localize novel events based
on unseen text queries.

— We reorganize two existing text-based temporal localization datasets (Charades-STA
[12] and ActivityNet Captions [24]) for our proposed novel problem setting. Em-
pirical results on these two text-based video moment localization datasets show that
our proposed approach can reach up to 15% absolute improvement in performance
compared to existing localization approaches.

2 Related Works

Temporal Localization of Moments. Temporal localization of moments in a video
based on text query was introduced by [3| [12]. Recently, there are many works that
address the problem both in presence of strong supervision (temporal endpoints are
known for each query) [} (6, 9} 13} 114} (15} [16} 17, 118} 21} 22} 130, 131} 132} 133) 134,
36, 138, 143l 147, 1531 157, 159, 160, 62} 165} 166} 167, (71} [72} [74] [75| 76, [77) 180, 81} 182 83l
84| 186] and weak supervision (only video-text correspondence is known) [7, 28, 135]
55,156, 611 [70]. Among the recent works on temporal localization of moments in the
fully supervised setting, [71] performs semantic conditioned dynamic modulation, [[74]
relies on dense regression based approach, [36] utilizes both local and global interaction
for video grounding. Recently, [37] proposed text-based temporal localization without
query annotation. Unlike our setting, they have access to videos of all types of events
and can optimize their model for such events in a weakly supervised manner. Hence,
none of these works address the problem of localizing novel events based on unseen
text queries.
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Zero-shot Learning (ZSL). ZSL aims to do inference task on classes whose instances
may not have been seen during training [26, 39, 64, [78| |87]]. Initial works on ZSL
were attribute-based [25| |41]]. However, attribute-based ZSL has poor scalability and
semantic embedding of labels are a good alternative for attributes [69]. Most of the
works that utilize semantic embedding based learning focus on the association of visual
and semantic information by linear compatibility [1, 2} 11} 48], non-linear compatibility
[52! 163] or in a hybrid way [40]. To the best of our knowledge, only [79] works on
activity detection in ZSL setup. However, [[79]] is limited to work on activity labels and
can not be adapted directly for moment localization of unseen text queries.

Zero-shot Cross Modal Retrieval (ZS-CMR). Conventional cross modal retrieval
work [10] considers similar type of events are present in both training set and test-
ing set. However, ZS-CMR aims to perform retrieval across multiple modality data in
the zero-shot setting. They train the retrieval model with limited categories to support
cross-modal retrieval on new categories [27]. There are few works that consider re-
trieval between visual and textual modality with ZS-CMR setting [8} 27, |68]]. However,
these works are limited by the use of specific class information of the images to transfer
knowledge between seen classes to unseen classes.

Relational Reasoning. Relational reasoning concept has been applied to different vi-
sion applications, i.e., visual question answering [46, |49]], deep reinforcement learning
[[73]], few-shot learning [54], self supervised learning [42], activity recognition [44,83].
[54] is the closest to the proposed TLRR and uses relational reasoning for zero-shot
learning. However, our work differs in several ways: (i) we do not work with a fixed set
of labels, (ii) our relational module learns to identify relations between visual informa-
tion rather than learning to identify relations between visual and semantic information,
and (iii) our proposed problem setup requires the model to identify intra-video subtle
differences between moments, whereas [54]] learns to differentiate classes.

3 Methodology

3.1 Problem Statement

Let S = {(v,q, (7s,7e))|lv € V", q € Q" 75,7 € [0,T]} be the training set of
video-sentence pairs for seen queries where V" is the set of all training videos with
maximum duration T', Q" is the set of seen queries, (75, Te) are the ground truth tem-
poral endpoints for a query. For a given test-set S*¢ = {(v, ¢)|v € V¢, q € Q'} with
video-sentence pairs, our task is to predict the set of temporal endpoints { (75, 7.)}. We
consider that Q" N Q¢ = ), i.e., queries in test-set are not seen during training. As
a result, V¢ contains events that are not present in V!". Additionally, we consider that
S'" is available during inference.

3.2 Localization Inference Schema

Existing temporal localization approaches [36, (71} [81] learn to encode fused moment-
text representations. They either follow candidate moment sampling and encoding pro-
cess to predict overlap scores (Figure 2| (a)) [[71} I81] or summarize the whole video
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Fig. 2. A brief illustration of our novel text-based temporal localization approach. While existing
works learn to encode video segments to identify the correct moment ((a) and (b)), we consider
relational reasoning between two semantically relevant moment for localization purpose (c).

based on query encoding and segment level encoding of video to regress temporal end-
points (Figure[2] (b)) [36]. In both cases, moment representations are directly optimized
for available seen events. As a result, the models get tuned to the available events in
the training set and do not necessarily learn to generalize for unseen events. Since, our
objective is to localize events which are not available during training, we deviate from
the conventional approaches and propose a novel approach on how to address the text-
based temporal localization task. For our proposed TLRR, we hypothesize that the cor-
rect moment corresponding to the unseen text query and the moments corresponding
to the semantically relevant seen queries will contain shared concepts or similarities.
Therefore, to identify the correct moment in a video based on an unseen text query,
instead of directly predicting based on the moment-text representation, we utilize se-
mantically relevant seen events. In that regard, we formulate the localization inference
as a relational reasoning problem between two semantically relevant moments.

For a given video and an unseen text query, semantically relevant moments can be
identified based on the semantics of the text query. Recent advances in Natural Lan-
guage Processing (NLP) unfold many sentence encoder models which are trained on
large corpus of text data in self-supervised or unsupervised manner. These models are
able to capture wide range of sentence semantics and can be transferred to other NLP
tasks. Our idea is to use these sentence encoders to find semantically relevant moments.
In our work, we utilize universal sentence encoder [4]], which is also able to capture sen-
tence semantics, to find semantically relevant moments. Figure [2] (c) clearly illustrates
our localization inference scheme. Given the unseen query, instead of directly inferring
overlap scores from moment-text fused representation, we first identify semantically
relevant query and its corresponding moment using universal sentence encoder. We uti-
lize this semantically relevant moment as the support moment and consider relational
reasoning between the support moment and the candidate moments to identify the cor-
rect moment. Our motivation behind this approach is that this relational inference sys-
tem can be learned using available training data and the learned relational model is
transferable to unseen cases [54)]. Our framework consists of candidate moment en-
coder, fusion network, support moment encoder and relational reasoning module. In
the following sections, we discuss the framework and how we utilize available training
data to learn a proper relational inference system.
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Fig. 3. Overview of the framework and the training of the relational reasoning based temporal
localization approach. Candidate moment and support moment representations are aggregated to
form positive pairs (positive candidate, positive support) and negative pairs (negative candidate,
positive support)/( positive candidate, negative support). The relational module is trained to esti-
mate the relational scores based on the pairs.

3.3 Framework

As illustrated in Figure[3] our framework consists of a candidate moment encoder that
generates a text-fused representation of candidate moments, a support moment encoder
that encodes the support moment, and a relational prediction module to infer based on
the relational reasoning between candidate moment and support moment. To learn the
relational reasoning system utilizing available training samples, we mimic the relational
inference task during training. At train-time, for seen queries in training set, we infer the
overlap scores based on the relation between candidate moment and support moment,
where the ground truth moment is used as the positive support moment. All the modules
and the learning procedure are described in the following sections.

Visual Feature Extraction. We perform fixed interval sampling over the frames of the
videos and sample [ non-overlapping clips per video. For each clip, we extract 2D/3D
convolutional feature, resulting in a set of [ clip features {c; }._,. Here, c; is the feature
representation of the it" clip.

Text Feature Extraction. We use GloVe word embedding [45]] and Bi-directional LSTM
network [19] for representing text queries. For each word s of the query sentence ¢, we
use Glove word embeddings to obtain its initial embedding vectors, which are fed se-
quentially into a three-layer bidirectional LSTM network. The last hidden state q is
used as the feature representation of the input sentence.

Candidate Moment Encoding and Modality Fusion. Clip representations {c;}._;,
sampled from each video is used to construct candidate moment representations. For
each candidate moment, we max-pool the corresponding clip features across the spe-
cific time span. For example, moment corresponding to i*" to (i 4+ n)" clips will
be represented by f.,., = MaxPool(c;,...,¢Ciiy), where f € R (dy is the
feature dimension). Moment encodings and text encodings are projected in the same
subspace and their dot product is taken as the fused moment-text representation by
e = (Wiq).(WY f). Here, W? and W are the learnable parameters. We stack all
moment-text representations of a video as a 2D feature map, similar to [81]], and use L
convolutional layers to further encode the representations. As a result, we obtain a set



Text-based Temporal Localization of Novel Events 7

of candidate moment representations {m;}~Y ;, where NV is the total number of candi-
date moments from a video and m; € R%m, where d,,, is the feature dimension of the
candidate moment representations.

Support Moment Encoder. We use a feed-forward network as the support moment
encoder. For a support moment consisting of n consecutive clips {¢;}!_,, where ¢; €
R4m , we first average pool the n clip representations to a single representation s’ €
R . If we have multiple support moments, then we average pool all the support mo-
ment representations into a single representation. Then we use a feed-forward network
to obtain the final support representation s by

s = ReLU(W?®s' +b°). (1)

Here, W* and b° are the learnable parameters and s € R%. We keep the feature
dimension of support moment same as the candidate moment feature dimension d,,.
The input to the support moment encoder varies in the training stage and inference stage.
In the training stage, the correct candidate moment is used as the support moment. In
the inference/testing stage, based on the unseen test query, most semantically relevant
moments from the training set are used as the support moments. These moments work
as the helper to find the correct moment from the video.

3.4 Relational Prediction

The relational module is a function Zy(-) parameterized by learnable weights 6 and
modeled by a feed forward neural network. Input to the relational module is a pair of two
representations x; and x;, where one element represents the selected support moment
s and the other element represents a candidate moment m; from the set of candidate
moment representations {m;}¥ ;. We use concatenation as the aggregation function
to get aggregated representation of x; and x; as acq:(x;, ;). For a pair of support
moment representation s and i*" candidate moment representation m, the relational
module outputs a overlap score ¢; by

¢i = Z@(acat(sa mt)) (2)

To confirm that the relational reasoning module Zy predicts based on the relation
between pair of representations and not based on a single representation, Zy requires
to maintain the commutative property, i.e., Zg(acat (8, M;)) = Zg(acat(m;, s)). How-
ever, the concatenation operation a.q(, -) is not commutative. Therefore, to enforce
the commutative property of the relational module, we compute the overlap score for
the pair of elements s and m; by

1

¢ = 5 [ZO (acat (mi7 S)) + Z@(acat(sv mz))] : 3

3.5 Learning Relational Inference

In our learning setup, a training sample consists of a video v, a text query ¢, and tempo-
ral ground truth information for the query (75, 7). Instead of learning to directly predict
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the overlap score for each candidate moment, we learn to infer the overlap scores based
on the relation with most relevant support moments. To train this relational inference
system, we sample two types of support moment: i) positive support moment and ii)
negative support moment. For each query in a video, we extract the ground truth seg-
ment of the video and use it as the positive support moment sT. Again, for each query in
a video, we select semantically unrelated query in the trainset and use its corresponding
moment as the negative support moment s~ . Our objective is to distinguish intra-video
candidate moments based on the support moment. To do so, we compute overlap pre-
diction loss £ for a set of pairs X'={(m;, s)}, which consists of pairs of all
candidate moments and positive support moment in a video. To guide the learning of
distinguishing intra-video candidate moments through relational inference system, we
use scaled tIoU (temporal Intersection-over-Union) value with ground-truth segment
as the supervision signal. We compute the scaled t/oU by

0 gi S tmi'rw
i—tmin
Yi = m tmin < gi < tmaxs (4)
1 Ggi > tma:r~

Here, g; is the ground truth ¢t/oU for the it candidate moment and #,,,;n,, tmaz are
two thresholds to compute ;. For a video with N candidate moments, £ is realized
by binary cross entropy loss as

£intra _ 7% Z [yz log(qﬁl) —+ (1 — yz) log(l - ¢z)] . (5)
X1

Here, ¢; is the overlap score computed using Eqn. |3} To ensure that the model predicts
the overlap score based on the relationship between the candidate moment and the sup-
port moment, we use the sampled negative support moments s~ to train the model. In
each video, candidate moments with tIoU > t,,;, are considered as positive candidate
moment m ™. For each video with P positive candidate moments, we formulate a set of
pairs X2={(m;", s7)} and compute negative relational loss L"9 by

1
£res = -5 log(l - ¢i). (6)
X2

The two losses are jointly considered for training our relational inference model,
with A balancing contributions as in

Ltotal _ ﬁintra + AL71ed (7)
We compute L4 for all seen video-text query pairs in the training set and optimize
the relational inference model by minimizing the total loss.

3.6 Inference for Unseen Queries

During inference, given a video and an unseen text query, we are required to localize
the correct moment. We use the universal sentence encoder [4] to find semantically
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relevant queries from the training set. Then the corresponding moment to the relevant
query is used as a support moment. Based on the video, support moments, and the un-
seen query, the learned relational model predicts overlap score ¢ for different temporal
granularities in one forward pass. All the predicted segments are ranked and refined
with non-maximum suppression (NMS) according to the predicted ¢. Afterwards, the
final temporal grounding result is obtained.

4 Experiments

4.1 Reorganized Datasets

Existing benchmark temporal moment localization dataset splits are not designed for
the task of temporal localization of novel events based on unseen text queries. Instead,
training set (trainset for short) and testing set (testset for short) data are sampled from
the same distribution, and text queries in the testset overlap with text queries in the
trainset. We reorganize two of the benchmark datasets namely Charades-STA [12] and
ActivityNet Captions [24]] to create splits according to our problem setting. For both
datasets, we create splits based on the verbs and nouns present in the text queries. First,
we combine all the annotations of the trainset and testset videos of the dataset. To create
the splits, we consider a set of ny verbs and ny nouns present in the combined annota-
tion. We consider it the set of seen verbs and seen nouns. Then, we identify videos that
contain at least a single query that has a verb or noun not present in the mentioned set.
In the selected videos, queries which do not have verbs or nouns from the mentioned
set are collected as unseen testset split and, queries which have verbs or nouns from the
mentioned set are collected as seen testset split. The training set is created from the rest
of the videos, with queries that contain either verb or noun present in the mentioned
set. We exclude queries which contains verb or noun from both seen set and unseen
set. We use spaCy [20] to parse verbs and nouns from text queries. These reorganized
datasets reflect a realistic setting as datasets are usually composed of recurring events of
limited concepts. However, a localization system may encounter varied types of events
in real-world applications. Details of the nouns and verbs selected to create the split are
provided in the supplementary material. Excluding queries which contains verb or noun
from both seen set and unseen set results in reduced number of moment-sentence pairs
in the reorganized dataset. However, the size of the dataset doesn’t have impact on the
significance of our proposed problem setup, which is experimentally evaluated in the
supplementary material.

Charades-STA Unseen. Charades-STA dataset contains a total of 6,670 videos where
5,336 and 1,334 are the number of training and testing videos. Textual annotations
in Charades-STA has direct temporal correspondence with activity annotation of the
Charades dataset [50]. We combine training and testing set annotations and consider
ny = 20 and ny = 40 (excluding ‘person’ noun) for creating Charades-STA Unseen
dataset. In this way, we have Charades-STA Unseen dataset with 5525, 1665, and 867
training, unseen testing, and seen testing moment-sentence pairs respectively.
ActivityNet Captions Unseen. ActivityNet Captions [24]] dataset is proposed for dense
video captioning task. Each video contains at least two ground truth segments and each
segment is paired with one ground truth caption [66]]. This dataset contains around 20k



10 S. Paul et al.

Table 1. This table reports unseen text query based temporal moment localization performance
of TLRR, compared against several approaches, on Charades-STA Unseen dataset.

R@1, R@1, R@s5, R@s5,

Method U@0.5 IoU@0.7 IoU@05 IloU@0.7 ™°U
DeViSE [11] _ 29.98 11.29 71.42 39.81 5

ESZSL [48]  23.90 10.13 60.50 3453 -

SCDM [71]  28.22 11.89 54.25 3295  28.63
LGI [36] 29.01 12.85 - - 29.62
2D-TAN [81]  31.05 13.33 70.75 36.94  29.88
TLRR 33.15 1622  77.66 4240  31.29

videos which are split into training, validation, and testing set with 50%, 25%, and
25% ratio respectively. Textual description for only the training and validation set is
given. We combine training and validation set and consider ny = 70 and ny = 250
for creating ActivityNet Captions Unseen dataset. In this way, we have ActivityNet
Captions Unseen dataset with 5669, 2553, and 710 training, unseen testing, and seen
testing moment-sentence pairs respectively.

4.2 Evaluation Metric

We use “RQ@k, IoU@m”, which reports the percentage of at least one of the top-k
results having Intersection-over-Union (IoU) larger than m [12]]. For a text query,
“RQk, IoU@m” reflects if one of the top-k retrieved moments has IoU with the ground
truth moment larger than the specified threshold m. So, “RQFk, IoU@m” is either 1 or
0 for each text query. We compute it for all the text queries in the testing sets and report
the average results for k € {1,5} and m € {0.50,0.70}. We also compute mIoU where
mloU is the average IoU over all testing samples.

4.3 Implementation Details

We use VGG feature [51] for Charades-STA Unseen dataset. For ActivityNet Captions
Unseen dataset, we use extracted C3D features [38]. The number of frames in a clip is
set to 4 for Charades-STA Unseen, and 16 for ActivityNet Captions Unseen and we use
non-overlapping clips for both datasets. The number of sampled clips N is set to 16 for
Charades-STA Unseen, 64 for ActivityNet Captions Unseen. For the candidate moment
encoder, we adopt a 4-layer convolution network with a kernel size of 5 for Charades-
STA Unseen and a 4-layer convolution network with a kernel size of 9 for ActivityNet
Captions Unseen. For both datasets, the support moment encoder is a single-layer feed-
forward network and the relational prediction network is a two-layer feed-forward net-
work. The proposed network is implemented in TensorFlow and trained using a single
RTX 2080 GPU. We use mini-batches containing 32 video-sentence pairs and use Adam
[23] optimizer with a learning rate of 0.0001. The dimension of both candidate moment
representation d,,, and support moment representation d; is set to 512 for both datasets.
We set A=3 empirically in Eqn [7| for both datasets. The scaling thresholds ¢,,;, and
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Table 2. This table reports unseen text query based temporal moment localization performance
of TLRR, compared against several approaches, on ActivityNet Captions Unseen dataset.

R@1, R@1, R@s5, R@5

Method U@0.5 IoU@0.7 IoU@05 IloU@0.7 ™°U
DeViSE [11] _ 5.07 2.00 10.46 4.05 5

ESZSL [48] 472 1.85 11.83 4.48 -

SCDM [71] 19.22 8.22 46.38 2358 23.97
OD-TAN [81]  19.15 10.26 3878 2401 21.70
VSLNet [77]  19.23 9.99 - ; 25.32
TLRR 23.19 1324 5331  36.66  26.35

tmaa of Eqn.[@]are set to 0.5 and 1.0 respectively for both datasets. Non-maximum sup-
pression (NMS) with a threshold of 0.5 is applied during the inference. We train TLRR
for 50 epochs. We select the checkpoint which has the best average performance across
metrics for seen queries.

4.4 Result Analysis

Temporal Localization Performance of Novel/Unseen Events. Since ours is the first
work on temporal localization of novel events, there are no existing approaches to di-
rectly compare with. As our problem setup is closely related to zero-shot settings, we
adapt two zero-shot learning approaches namely DeViSE [11] and ESZSL [48] for this
problem setup. We also compare with some of the state-of-the-art temporal localization
approaches with publicly available codes, e.g., 2D-TAN [81]], SCDM [71], LGI [36],
and VSLNet [77]], by training those models using our reorganized training splits.
Table [T] and Table 2] illustrate the TLRRs’ performance for temporal localization
of novel event based on unseen text query and compare it with other approaches for
Charades-STA Unseen and ActivityNet Captions Unseen dataset respectively. For the
Charades-STA Unseen dataset, the performance of different baseline approaches are
comparable among them. However, TLRR provides 2% — 7% absolute improvement
over the best scores of compared approaches over all the reported metrics. In Table
[2] baseline zero-shot approaches (DeViSE, ESZSL) are performing poorly for Activi-
tyNet Captions Unseen dataset. This is because the text queries are complex compared
to Charades-STA Unseen and it requires fine-grained analysis of longer videos in Activ-
ityNet Caption Unseen. We observe 3% — 15% absolute improvement over best scores
of compared approaches in the ActivityNet Captions Unseen dataset.
Relational Reasoning Performance Analysis. Since TLRR’s performance is depen-
dent on its ability to reason on the relationship of two different moments, in Table [3]
we analyze the competence of our relational reasoning module Zy for Charades-STA
Unseen dataset. We consider three scenarios: i) Irrelevant: based on the unseen text
query, retrieve the seen query from the semantic embedding space that are furthest
away or most irrelevant and use the corresponding moment as the support information,
ii) Random: retrieve random seen query from the training set and use the corresponding
moment as the support information, and iii) Relevant: retrieve the nearest/most relevant
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Table 3. This table reports unseen text query based novel event localization performance using
different types of support moments to analyze TLRR for Charades-STA Unseen dataset.

R@1, R@1, R@s5, R@5, mloU

Support Moment | /1,605 1oU@0.7 ToU@05 IoU@0.7

Trrelevant 20.30 11.05 62.58 3393 22.48
Random 28.71 14.47 7357 4024 2840
Relevant 33.15 1622  77.66 4240  31.29

seen query from the semantic embedding space and use the corresponding moment as
the support information (i.e., our proposed TLRR). We observe that when irrelevant
queries are retrieved and their corresponding moment is used as the support, the per-
formance goes down. Since the moment corresponding to a irrelevant query does not
contain shared concept/ similarities with the correct moment, the relational module ex-
pectedly fails to identify the correct moment. When random seen queries are selected,
the performance is better compared to the irrelevant case. We obtain the best perfor-
mance when the closest seen query is selected from the semantic embedding space.
Temporal Localization Performance of Seen Events. We further report the perfor-
mance of different approaches when evaluated on the testing split of seen queries in
both the datasets on Table ] and Table 5] Although the main focus of this paper is tem-
poral localization of unseen events, this experiment is presented to evaluate how the
performance of different methods changes for seen events compared to localization of
unseen events (Table [I|and Table 2)). We expect any method to work slightly better on
localizing the seen events compared to the unseen ones; however, a drastic/large change
would indicate poor generalization ability of the model.

For the compared methods and baselines, we observe that there is a significant dif-
ference in performance when the same model is evaluated in the testing split of seen
queries and testing split of unseen queries for both datasets comparing Table [I] and
Table [2| with Table 4] and Table [5 respectively. Not surprisingly, both the conventional
temporal localization approaches (i.e., SCDM and 2D-TAN) show a drastic change in
performance across metrics in both datasets. The average difference in performance is
reported by A, in Table 4| and Table [5S| SCDM shows 19.80% average difference
in Charades-STA and 13.24% average difference across metrics in ActivityNet in lo-
calization performance of seen queries compared to localization performance of un-
seen queries. Similarly, 2D-TAN shows average difference (across metrics) of 5.89% in
Charades-STA and 16.18% in ActivityNet in localizing seen queries compared to un-
seen. Though the zero-shot based approaches (DeViSE and ESZSL) show small gap in
performance between seen and unseen events, which is expected due to the approaches
generalization ability, they are unable to maintain a proper level of localization perfor-
mance compared to other methods. However, the proposed TLRR approach shows a
significantly lower change in performance, e.g., 3.37% average in Charades-STA and
7.13% average in ActivityNet Captions.

This indicates the significance of the problem setup and generalization ability of
TLRR. Unlike the conventional temporal localization approaches, TLRR is not de-
signed to specifically focus on the seen events. In Table {] and Table [5| we observe
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Table 4. This table reports seen text query based temporal moment localization performance of
TLRR on Charades-STA Unseen dataset. Here, A4 refers to average performance difference for
seen events and unseen events (Tablem) for a specific method. From the lower value of Agyyg, it
is evident that TLRR generalizes significantly better than other temporal localization approaches.

Re@1, R@1, R@5, R@5, A 1
IoU@0.5 IoU@0.7 IoU@0.5 IoU@0.7 ave
DeViSE [11] 36.34 15.86 77.66 44.10 5.36
ESZSL [48] 37.50 18.40 72.34 42.13 10.34

Method

SCDM [71]] 50.46 28.00 73.49 54.86 19.80
2D-TAN [81]  37.95 18.45 76.70 42.56 5.89
TLRR 34.83 20.76 78.78 48.56 3.37

Table 5. This table reports seen text query based temporal moment localization performance of
TLRR on ActivityNet Captions Unseen dataset. A,,4 refers to average performance difference
for seen events and unseen events (Table@ for a specific method. From the lower value of Ag. g, it
is evident that TLRR generalizes significantly better than other temporal localization approaches.

R@1, R@1, R@5, R@5,

Method 1oU@0.5 ToU@0.7 ToU@05 IToU@0.7 “evs+
DeVISE[IT] 1207 540 18.18 852 564
ESZSL @8]  12.64 540 1974 8.66 5.89

SCDM [71] 34.66 20.74 59.51 35.37 13.24
2D-TAN [81]  34.65 22.39 57.18 42.68 16.18
TLRR 27.46 17.61 60.42 49.44 7.13

that model optimized to do localization inference directly based on the candidate mo-
ment representation overall performs better compared to TLRR for types of events that
are already seen in training. However, direct localization limits these models’ capacity
to a small set of events which is evident by the significant gap between performances for
seen and unseen events. Instead, our proposed TLRR approach is able to retain a com-
petitive performance for the seen queries and boost the performance for unseen queries
resulting in reducing the performance gap between seen and unseen events. Also, our
proposed TLRR is able to show comparable performance (please refer to supplemen-
tary material) on the original temporal localization dataset, even though TLRR is not
optimized for seen events and have a relatively simple base architecture.

Effect of £™°9 in learning TLRR. TLRR uses £*"® and £™* to learn relational
localization system. Effectiveness of these two loss components for distinguishing intra-
video moments by relational prediction is evident from Table [T} Table [2] and Table 3]
We consider two setups, i) TLRR trained with £7*"% and ii) TLRR trained with £7#"¢
+ AL™°9. We observe that when only £ is used to train TLRR, there is almost
no difference in performance (difference within 1%) for using relevant or irrelevant
moments as input to the support encoder. However, there is 5% — 15% difference in
Charades-STA Unseen dataset for using relevant or irrelevant moments as input to the
support encoder when £ 4+ \L£"°9 is used to train TLRR. So, £"°9 enforces the
model to predict based on the relation.
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Fig. 4. Given the query ‘The person laughs’ and the corresponding video, this figure shows: (a)
ground truth segment of the video which corresponds to the text query, (b) predicted moment
by 2D-TAN, (c) predicted moment when irrelevant moment is used as support, and (d) predicted
moment using retrieved relevant support moment (TLRR). While (b) and (c) result in failure,
TLRR is able to detect the correct moment using relational reasoning.

Qualitative Result. In Figure[d] we illustrate an example case of our system’s success.
Given the query ‘The person laughs’ and the corresponding video, Figure ] shows: (a)
ground truth segment of the video which corresponds to the text query, (b) predicted
moment by 2D-TAN, (c) predicted moment when irrelevant moment is used as support,
and (d) predicted moment using retrieved relevant support moment. Person laughing is
a difficult event to detect as it encompasses a small region of the frame and results in
small temporal variation in the feature. Without any notion/previous knowledge of how
the activity/event is, it becomes even harder, which is reflected by the failure case of (b)
and (c). However, TLRR is able to detect the correct moment using relational reasoning.

5 Conclusion

In this paper, we address the novel problem of temporal localization of unseen/novel
events based on unseen text queries. The problem of identifying novel events in video
is important and practical because not every kind of event can be expected to be within
the training set. This allows for generalization of temporal localization methods to novel
scenarios. We propose a relational reasoning based framework hypothesizing a con-
ceptual relation between moments corresponding to semantically relevant queries. Ex-
tensive experiments on reorganized Charades-STA and ActivityNet Captions datasets
demonstrate the effectiveness of the proposed framework compared to several base-
lines in localizing video moments from text queries. Our code and dataset splits will be
publicly available. Though support moment based relational prediction can reduce the
performance gap between seen and unseen events, it is burdened with the extra compu-
tation of relevant moments, which is computationally expensive. Future work can focus
on this issue.
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