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Abstract—Several works in computer vision have demonstrated
the effectiveness of active learning for adapting the recognition
model when new unlabeled data becomes available. Most of
these works consider that labels obtained from the annotator
are correct. However, in a practical scenario, as the quality of
the labels depends on the annotator, some of the labels might
be wrong, which results in degraded recognition performance.
In this paper, we address the problems of i) how a system can
identify which of the queried labels are wrong and ii) how a
multi-class active learning system can be adapted to minimize
the negative impact of label noise. Towards solving the problems,
we propose a noisy label filtering based learning approach where
the inter-relationship (context) that is quite common in natural
data is utilized to detect the wrong labels. We construct a
graphical representation of the unlabeled data to encode these
relationships and obtain new beliefs on the graph when noisy
labels are available. Comparing the new beliefs with the prior
relational information, we generate a dissimilarity score to detect
the incorrect labels and update the recognition model with correct
labels which result in better recognition performance. This is
demonstrated in three different applications: scene classification,
activity classification, and document classification.

Index Terms—Context, Label noise, Active learning.

I. INTRODUCTION

Most of the current visual recognition tasks are performed
by supervised learning approaches, which require a lot of train-
ing data. Every day a lot of visual and text data is generated
from various sources which we can manually label and utilize
to update the recognition system. But manually labeling a
huge amount of data is tedious work and it becomes expensive
if human experts are used. To reduce the labeling task, one
effective approach is to actively select informative samples for
manual labeling and update the recognition models with these
selected samples. This scheme is known as active learning.
As all the training samples may not be useful for developing
a recognition system, active learning can reduce the labeling
cost without compromising the recognition performance much
[1], [2], [3], [4], [5], [6], [7], [8].

In most of the active learning works, it is assumed that the
labels provided by the human labelers are correct. However,
in a practical scenario, labels queried from non-expert labelers
are prone to error due to perception variations or incorrect
annotation [9]. Incorrect labels can adversely impact the
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classification performance of the influenced classifier [10].
This adverse impact becomes severe in an active learning
process as the amount of labeled data is limited. There are
some works [11], [12], [13], [14] that consider active learning
where an annotator can provide wrong labels. Most of these
works [11], [12], [13] only consider label noise problem for
binary classification. In contrast, visual recognition systems
typically require to perform multi-class classification tasks.
In [14], the authors studied multi-class multi-annotator active
learning in the presence of label noise. They propose active
learning with Robust Gaussian Process (RGP). However, as
the computational cost of inference in Gaussian Process is
O(n3) [15], this approach is not applicable to large scale
datasets. Moreover, there can be many applications where it
may not be possible to get multiple annotators, e.g., those that
require a high level of domain knowledge. Hence, the problem
of multi-class active learning in the presence of label noise
requires more exploration. Furthermore, none of the previous
approaches consider detecting which of the queried labels are
wrong. Detection of wrong labels is of significant importance
as it can be valuable for many applications like dataset creation
with minimal human effort, annotator expertise estimation, and
identifying samples that are difficult to annotate.

In this work, we propose a Context-aware Noisy Label
Detection (CNLD) approach to detect wrong labels and utilize
CNLD to formalize an active learning framework to handle the
adverse impact of label noise. In many applications, several
works have shown how to utilize the relationships between
data points, i.e., structure in the data, for different purposes.
For example, the relationship is used to improve recognition
performance in activity recognition [16][17], object recog-
nition [18][19], and text classification [20] [21]. This inter-
relationship is often termed as context. We also utilize the
inter-relationships that are quite common in natural data to
detect noisy labels. Generally, an incremental learning scenario
that uses active selection has one or more initial seed models
(classification model, relationship model) that are built on cor-
rect labels. We leverage the seed relationship model to obtain
prior relational information among the data classes. When new
data with queried labels are available, we infer its relational
information using graphical representations, compare it with
prior relations, and based on that obtain a dissimilarity score
which is a notion of how likely an instance is incorrectly
labeled. Utilizing this estimation, we detect which labels are
wrong, filter out the wrong labels, and continue the learning
process with correct labels. The motivation for this noisy label
detection approach is that an instance assigned with the wrong
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Fig. 1: Proposed framework for label noise-robust active learning scheme. Initial classification model Mt0 and relationship
model Rt0 are obtained using initial correctly labeled pool of data. When a new batch of data is available, it selects an
informative subset of samples and queries for human labeling where a fraction of the queried labels is considered wrong.
Graphical representations are constructed to encode contextual information. Conditional inference on the graph gives new edge
beliefs which are compared with prior beliefs to obtain a measure of how likely a label is wrong. Then the classification model
Mt0 and relationship model Rt0 are updated using only the correct labels.

label will lead to relational information among data classes that
are not consistent with the known prior relational information
among data classes.

Framework Overview. Figure 1 illustrates the framework
of our proposed approach. The framework is based on two
assumptions: i) there is an underlying structure in the data
which provides contextual relationships among the data classes
and ii) we have an initial pool of data that is correctly labeled.
Both of these are weak assumptions as almost all visual
data occurring naturally is structured and most active learning
methods starts with an initial seed model which is learned
using a small set of labels queried from expert annotators.
The method starts with training a classification model M
and a relationship model R using the initial pool of correctly
labeled data. When a new batch of unlabeled data is available,
an informative subset of the samples is actively selected.
These informative samples are queried for human labeling.
We consider the practical scenario where a subset of the
queried labels is wrong. Our goal is to improve the recognition
performance by updating the classifier with queried labels.

Since the incorrect labels may confuse the learning process
resulting in poor performance [22], we formulate a noisy label
filtering based approach to reduce the influence of wrong
labels during the learning process. To filter the noisy labels,
we start by representing the queried instances along with
their linked elements and defined attributes as graphs. Using
the learned classifier, a probability mass function over the
possible classes is obtained for each queried instance and
its linked elements. We assign this probability mass function
as node potentials. Edge potentials are obtained from the
current relationship model. A message-passing algorithm is
used to perform conditional inference. Conditional inference
gives new edge beliefs which we consider as the posterior
contextual information. We compare the posterior contextual

information with prior contextual relation (obtained from the
current relationship model) to compute a dissimilarity measure
which is used to detect wrong labels. Then the classification
modelM and the relationship model R are updated using the
filtered labels.

Main Contributions. The main contributions of the work are
as follows.
• We derive a dissimilarity score to determine wrong labels

by exploiting the inter-relationship among data categories,
which is ubiquitous in natural data.

• We formalize a general active learning framework that
utilizes the inter-relationship based dissimilarity score to
filter noisy labels provided by the annotator.

• We empirically evaluate the performance of the Context-
aware Noisy Label Detection (CNLD) approach, as well
as its positive impact on active learning, on three different
applications.

II. RELATED WORKS

There has been a considerable amount of work on active
learning. Most of the active learning algorithms use the
uncertainty of the classifier as a measure of informativeness
of an unlabeled data, e.g., entropy [3], best vs. second best
[23], classifier margin [24]. Another common concept in active
learning algorithms is expected model output change utilized
in [25], [5], [26]. All of these methods consider the samples
to be independent of each other. There have been some active
learning methods that utilize relational information [27], [1],
[28]. Recently some active learning methods are developed to
scale well with deep learning network, e.g., core-set approach
[29], deep Bayesian approach [30], learning loss based ap-
proach [31], variational adversarial approach [32].

There have been some works on active learning in the
presence of label noise. Most of the works have a base
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setting where the learner is given an input space X , a label
space L, and a hypothesis class H. The goal is to select a
hypothesis from the hypothesis class H which is closest to the
hypothesis that generates the ground truth labels. Two types
of noisy label settings are commonly used in these works:
i) random classification Noise (RCN), where each label is
flipped with a probability that is independent of the instances,
and ii) increase of noise rate near the decision boundary. In
[33], the RCN setting is used and addressed by repeatedly
querying an example. The sampling strategy in [34] utilizes
Extrinsic Jensen-Shanon (EJS) divergence. In [35], [36], [37],
[38], the second setting of noise where noise rate increases
near decision boundary is studied. Works on agnostic active
learning [39], [40], [37], [36], [41], [38] considers a fraction
of label may disagree with the optimal hypothesis of the
hypothesis class H. However, maintaining a hypothesis class
may not be feasible for many computer vision applications.

There are some works on noise-robust active learning in
the presence of multiple annotators. In [11], active learning
of kernel machine ensemble in collaborative labeling when
labels might not be noise free is explored. In [12], [13], a
noise resilient probabilistic model for active learning of a
Gaussian process classifier from crowds is used. However,
these approaches are designed for binary classification task.
Long et al. [14] have studied multi-class multi-annotator active
learning using robust Gaussian process for visual recogni-
tion. In contrast, our work focuses on the presence of noisy
labels for each annotator. Moreover, we are utilizing inter-
relationship among data to detect the noisy labels and improve
the robustness of the active learning framework.

III. METHODOLOGY

Problem Definition. Suppose, we have an initial set of data
instances L that is correctly labeled. We extract features XL

from this initial set of labeled data and train baseline classifi-
cation modelM and relationship model R. Then a new batch
of unlabeled data U consisting of N data instances becomes
available. We represent the extracted features of the unlabeled
set of data as {XUj }Nj=1. To update the classification model
M, an active sample selection procedure selects a subset Q of
k unlabelled data instances from the unlabeled set of data U ,
where k ≤ N . This set of k instances, Q = {q1, q2, . . . , qk}
is queried for manual labeling. After labeling by human
annotator, we have the obtained labels Y ′ = {y′1, y′2, . . . , y′k}.
Considering the scenario where manual labeling is prone to
error, we assume Ω fraction of the observed labels are wrong
and the noise rate is unknown to the system. The true labels
Y = {y1, y2, . . . , yk} of selected set Q is also unknown. Our
goal here is to identify and remove the wrong labels and
update the classification model M and relationship model R
with only the correct labels so that the wrong labels cannot
influence the models adversely.

Noisy Label Generation. We consider two statistical models
to generate noisy labels synthetically. The Noisy Completely
at Random (NCAR) [9] statistical model is used to generate
symmetric label noise and the Noisy at Random (NAR) [9]
model is used to generate asymmetric label noise.

Fig. 2: An example illustration of how the instances are
represented as graphical structure. In the scene classification
task, the shown image has a scene tag: bedroom and 3 objects:
bed, armchair, and lamp. We represent the image by a tree
structured graph with four nodes (one scene node and three
object nodes) and three edges (scene-object).

In the NCAR model, occurrence of an error has no relation
with the instance or the label of that instance. Let the set of
possible classes be Z = {c1, c2, . . . , cn} for a set of data
with n classes and the selected noise rate is Ω for each
class. Assigning equal noise rate Ω to each class results in
symmetric noise. For the ith class, Ω fraction of randomly
chosen labels are assigned with randomly chosen classes from
the set Z\{ci} using the NCAR statistical model.

In the NAR model, occurrence of an error depends on the
true label of the instance. We use this model to generate
asymmetric noise as we can define which classes are more
prone to label noise using the NAR model. Label noise
generated by the NAR statistical model can be characterized
by label transition matrix [9]. Let two random variables Y and
Ỹ denotes the true label and the assigned label respectively.
So the label transition matrix characterizing the label noise
noise generation is,

Λ =


P (Ỹ = c1|Y = c1) . . . P (Ỹ = cn|Y = c1)

...
. . .

...
P (Ỹ = c1|Y = cn) . . . P (Ỹ = cn|Y = cn)

 (1)

Here, P (Ỹ = ỹ|Y = y) is the label transition probabilities
from true class to assign class. We use k-means clustering on
the training data to obtain the transition probabilities, which
is discussed in section (IV-D).

A. Modeling Contextual Relationships

Inspired by the success of graphical representation in en-
coding contextual relationships in several applications [42],
[28], [18], we also utilize graphical representation to encode
contextual relationships. Graph construction and how we de-
fine the node potentials and the edge potentials are described
below.

Graph Formulation. We model the inter-relationship among
the data by constructing an undirected graph G = (V,E).
Each node in V represents a single instance. The edges
E = {(i, j)|vi and vj are linked} represent the relationships
between the data points. If related attributes A are present
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in the structured data, we also model these into a graphical
representation. Then the undirected graph G = (V,E), mod-
eling inter-relationship among the data points and also the
relationships between the data points and related attributes
A will have two types of node, V = {D,A} and two
types of edges, E = {D − D,D − A}. Here, D represents
the set of nodes corresponding to the data instances and
A represents the set of nodes corresponding to the related
attributes. D − D and D − A are the relationships among
data points and between data points and attributes respectively.
Related attributes depend on the specific application, e.g., in
scene classification, objects present in an image can be used
as attributes. We consider the case of document classification
where only the links between data points (D − D) are
present, scene classification where only the links between data
points and related attributes (D −A) are present and activity
classification where both links between data points (D −D)
and links between data points and attributes (D − A) are
present. For example, in scene classification task, we represent
data instance (scene) as scene node and detected objects as
attribute nodes. As shown in Figure 2, we formulate a tree
structured graph to represent the image.

Algorithm 1 Context-Aware Noisy Label Detection (CNLD)

Input:
• Initial correct classification model Mt0

• Initial correct relationship model Rt0

• Annotated noisy labels
Output: Detection of wrong labels
step 1: Calculate P (CD|c) and P (CA|c) from Rt0

for each element (qi) of Q do
step 2: Construct Gi = (Vi, Ei)
step 3: Calculate P̂ (CDi |c) and P̂ (CAi |c) by conditional

inference
step 4: Calculate dissimilarity score li using Eqn. 7

end for
step 5: Estimate weight γ using Eqn. 8
step 6: Based on β detect noisy labels.

Node Potential. Let us consider that we have a classification
task where the data belongs to one of n classes of {c1, . . . , cn}.
Given a classifier M, it can generate probability estimate of
a data instance belonging to any class of {c1, . . . , cn}. The
probability estimate of node j belonging to some class ci can
be expressed as M(Xj , ci). Consider an indicator function
I(.) which takes as input a class c and provides as output a
unit standard basis vector, i.e., I(c = c1) = [1, 0, . . . , 0]T . So
the vector containing the node potentials of the jth node for
n classes can be expressed as,

ϕj =

n∑
i=1

I(c = ci)M(Xj , ci) (2)

Edge Potential. The edge potentials are obtained using the
co-occurrence frequency [19]. Co-occurrence statistics can
give an estimate of how likely two data classes are related
or how data classes are related to the attribute classes. For
example, in an image tagged with ‘bedroom’ scene class,

objects such as ‘bed’ and ‘chair’ are more likely to occur
than a ‘car’. So the edge potentials represent the relationship
weights among the data classes as well as between data classes
and attribute classes. For two types of edges, we assign two
different edge potential matrices ΨD−D and ΨD−A. Here
Ψ(i, j) is the co-occurrence frequency of class ci with class
cj . Calculation of co-occurrence frequencies are application-
specific and discussed in section IV.

B. Context-aware Noisy Label Detection

Suppose, a subset of data Q = {q1, q2, . . . , qk}, consisting
of k elements, is queried for human labeling. We consider
that Ω fraction of the labels are incorrect. In this section, we
discuss how we detect the incorrect labels using the graphical
representations that encode the relationships among the data
and also among data and attributes.

Contextual Relation. The relationship model R contains
the co-occurrence information of different data classes and
attribute classes. For a n class classification task with classes
{c1, c2, . . . , cn}, we have n × n matrix ΨD−D, where the
(i, j)th value, ΨD−D(i, j) represents the co-occurrence statis-
tics of data class ci and data class cj . Using this co-occurrence
information we can calculate the probability of presence of ith

data class ci in presence of jth data class cj by,

P (ci|cj) =
ΨD−D(j, i)∑n
i=1 ΨD−D(j, i)

(3)

Similarly, from the relationship model Rt0 , we have the
co-occurrence frequency of data classes and attribute classes
ΨD−A. If there are m attribute classes {a1, a2, . . . , am}, the
probability of presence of ith attribute class ai in presence of
jth data class cj can be expressed by,

P (ai|cj) =
ΨD−A(j, i)∑n
i=1 ΨD−A(j, i)

(4)

Prior Relational Information. From the current relationship
model Rt0 , we know ΨD−D and ΨD−A, which we consider
as the prior edge beliefs. Suppose, in an n class classification
problem with m classes of attributes, CD is a random variable
with sample space {c1, c2, . . . , cn} and CA is a random vari-
able with sample space {a1, a2, . . . , am}. Using the prior edge
beliefs in Eqn 3 and 4, we obtain the conditional distribution
P (CD|c) and P (CA|c), which we call the prior relational
information for instances of Q.

Dissimilarity Score Generation. In order to detect the
wrong labels by exploiting the relationships, we construct
graphical representation as described in III-A for each element
of Q along with their linked data instances and attributes.
Consider an instance q is linked with e data instances and
attributes and the queried label is y′. We construct graph
for q, which can be represented as G = (V,E) where
V = {v1, v2, . . . , ve+1} and E = {(1, j)|j = 2, . . . , e + 1}.
Here the node v1 represents the data instance q and nodes
v2, ..., vm+1 are linked data instances and attributes of q. The
graph has e edges that connects v1 with all the other nodes. So
G forms a tree structure. The node potentials ϕ and the edge
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potentials ΨD−D, ΨD−A are assigned using the classification
model Mt0 and relationship model Rt0 .

Now for each instance of Q, we estimate its class condi-
tional relatedness with other classes by making conditional
inference on the representative graph. Conditional inference
gives the pairwise conditional distribution of classes for each
edge, which we call the posterior edge beliefs Ψ̂. Using the
posterior edge beliefs of all edges in a graph, we estimate the
posterior probability distribution conditioned on a class for
each instance of Q.

Suppose, we assign jth class cj to the instance q and make
conditional inference on graph G. Let the number of D −D
edges is e1 and the number of D−A edges is e2 in graph G.
We estimate the posterior probabilities by,

P̂ (ci|cj) =
1

e1

∑e1

k=1 Ψ̂(D−D)k(j, i)∑e1

k=1

∑n
i=1 Ψ̂(D−D)k(j, i)

, (5)

P̂ (ai|cj) =
1

e2

∑e2

k=1 Ψ̂(D−A)k(j, i)∑e2

k=1

∑m
i=1 Ψ̂(D−A)k(j, i)

, (6)

where Ψ̂(D−D)k represents posterior edge beliefs of kth

D − D edge and Ψ̂(D−A)k represents posterior edge beliefs
of kth D − A edge. Using Eqn 5 and 6, we obtain the
posterior conditional distribution P̂ (CD|c) and P̂ (CA|c) for
each instance of Q, which we call the posterior relational
information.

We rely on the idea that an instance is most likely wrongly
labeled by the annotator if the posterior relational information
for the assigned class is not consistent with the prior relational
information for that class. We use Kullback-Leibler divergence
on the prior and posterior relational information and use that
to assign a dissimilarity score L = {l1, l2, . . . , lk} on each
element of Q. This dissimilarity score gives a measure of how
dissimilar the prior and posterior relational information is. If
ith element qi is labeled with kth class ck by the annotator,
we assign the dissimilarity score to the ith instance by,

li =
1

n

n∑
j=1

max
(
DKL(P̂ (CDi |ck)||P (CD|ck))

−DKL(P̂ (CDi |cj)||P (CD|cj)), 0
)

+
1

m

m∑
j=1

max
(
DKL(P̂ (CAi |ck)||P (CA|ck))

−DKL(P̂ (CAi |cj)||P (CA|cj)), 0
)

(7)

Here, P̂ (CDi |c) and P̂ (CAi |c) represent the posterior rela-
tional information of the ith instance qi.

C. Model Update

For ith labeled instance, the estimated weight from the
dissimilarity score is,

γi = 1− li
max(l1, l2, . . . , lk)

(8)

We consider a threshold β for detecting wrong labels.
Instances for which γ > β, are considered correctly labeled.
The classification model Mt0 and relationship model Rt0 is
updated with these labels, which result in new classification
model Mt1 and new relationship model Rt1 .

IV. EXPERIMENTS

To evaluate the effectiveness of our proposed method, we
conduct experimental analysis considering noisy labels in three
different application domains: scene classification, activity
classification, and document classification. These domains are
selected as the data representative of the domains can share
relationships among them, which is required to form the
relationship model.

A. Dataset

MIT-67 Indoor [45] dataset is used for scene classification
application domain. The dataset contains images of 67 indoor
scene categories. We use the proposed split of trainset and
testset by [45] where the trainset contains 80 images per
class and the testset contains 20 images per class. For activity
classification, we use VIRAT [46] dataset. It consists of 329
sequences of 11 activity classes totaling 1422 activities. For
document classification, we use the CORA [47] dataset. It
consists of 2708 scientific publications divided into 7 classes.
These publications are linked by citations.

B. Features and Graphical Representation

Scene Classification. Scene features of MIT-67 Indoor
dataset images are extracted using ResNet-50 [48] pre-trained
on the Places365 [49] dataset. An off-the-shelf object detector
is used to detect objects that are present in the image.
We use the Matterport Mask R-CNN implementation [50],
which is built on Feature Pyramid Network (FPN) [51] and
a ResNet101 [48] backbone. We use a model trained on MS
COCO dataset [52] to detect objects. Each image in the dataset
is graphically represented by a single scene node and multiple
object nodes corresponding to the objects detected in that
image. Scene node potentials are obtained using the current
scene classification model, which we learn incrementally with
each incoming batch. Object node potentials are obtained using
an off-the-shelf detector. To detect mislabeled scene nodes, we
use the scene-object (S-O) relationships. All the object nodes
are connected to the scene node in the graphical representation
of an image forming a tree structure. We use the co-occurrence
frequencies of scene classes and object classes to build the
relationship model and assign edge potentials of the graph.

Activity Classification. C3D [53] model trained on sports-
1M [54] dataset is used to extract features from activity
segments. We extract the C3D features for every 16 frames,
with a temporal stride of eight frames, and apply max-pooling
to obtain a feature vector Xj ∈ R4096 for each segment.
Each sequence of the VIRAT dataset is represented by an
undirected graph. We consider two sets of nodes: activity
and object/person and two sets of edges: activity-activity and
activity-object/person. We consider activities within a certain
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TABLE I: Comparison of the performance of CNLD with other approaches for the noisy label detection task in symmetric
label noise scenario. We compare the performance for the set of noise ratio Ω ∈ {0.10, 0.20, 0.30, 0.40, 0.50}. The performance
is evaluated in terms of Type-I error (ER1), Type-II error (ER2), and Noise Elimination Precision (NEP) for three datasets.

Dataset Method Ω = 0.10 Ω = 0.20 Ω = 0.30 Ω = 0.40 Ω = 0.50
ER1 ER2 NEP ER1 ER2 NEP ER1 ER2 NEP ER1 ER2 NEP ER1 ER2 NEP

Scene

Majority [43] 0.10 0.88 0.12 0.19 0.76 0.24 0.29 0.68 0.32 0.37 0.57 0.43 0.47 0.45 0.55
Consensus [43] 0.10 0.87 0.13 0.19 0.76 0.24 0.27 0.64 0.36 0.35 0.53 0.47 0.43 0.41 0.59

Probabilistic [44] 0.09 0.81 0.19 0.19 0.76 0.24 0.26 0.61 0.39 0.34 0.52 0.48 0.43 0.43 0.58
CNLD 0.08 0.72 0.28 0.12 0.49 0.51 0.19 0.44 0.55 0.25 0.38 0.62 0.30 0.31 0.71

Activity

Majority [43] 0.09 0.80 0.20 0.16 0.63 0.37 0.22 0.51 0.49 0.26 0.40 0.60 0.31 0.31 0.69
Consensus [43] 0.08 0.71 0.19 0.14 0.54 0.46 0.18 0.41 0.59 0.20 0.31 0.69 0.24 0.23 0.77

Probabilistic [44] 0.05 0.49 0.51 0.10 0.38 0.62 0.12 0.29 0.71 0.17 0.25 0.75 0.19 0.19 0.81
CNLD 0.05 0.45 0.56 0.09 0.35 0.65 0.12 0.29 0.71 0.16 0.24 0.76 0.17 0.18 0.83

Document

Majority [43] 0.09 0.79 0.21 0.16 0.64 0.36 0.22 0.50 0.50 0.27 0.40 0.60 0.30 0.30 0.70
Consensus [43] 0.08 0.79 0.21 0.14 0.57 0.43 0.18 0.42 0.58 0.22 0.40 0.60 0.25 0.24 0.76

Probabilistic [44] 0.06 0.54 0.46 0.11 0.41 0.58 0.15 0.36 0.65 0.19 0.28 0.72 0.22 0.23 0.78
CNLD 0.05 0.45 0.55 0.09 0.34 0.65 0.11 0.28 0.73 0.15 0.22 0.78 0.18 0.19 0.82

spatio-temporal distance to be related to each other. The
co-occurrence frequencies of the activity-activity or activity-
object/person within a certain spatio-temporal region are used
to build the relationship model and assign the edge potentials.
Activity node potentials are obtained using the current activity
classifier. Object/person node potentials are obtained using the
same binning approach used in [55].

Document Classification. In the CORA dataset, every pub-
lication instance is represented using a dictionary of 1433
unique words. The feature vector Xj ∈ {0, 1}1433 indicates
the absence or presence of these words. We use the citation
link information to build the graphs. Every publication in-
stance is considered as a node and edges are formed when
an instance is linked with another one via a citation. Node
potentials are obtained using the current document classifier.
Edge potentials are represented by a matrix consisting of the
number of times a document of a certain class is linked to a
document of another class. We also use this link information
to build the relationship model.

C. Experimental Setups

We conduct experiments to analyze both the performance of
our proposed Context-aware Noisy Label Detection approach
for detecting wrong labels and the proposed active learning
framework for robust classification in all three application
domains. We use two different experimental setups to analyze
these two different tasks. Multinomial Logistic Regression
(MLR) is used as the classifier for all three applications. Note
that the steps of our algorithm are independent of the particular
choice of a classifier. Publicly available UGM Toolbox [56] is
used to infer on the node and edge beliefs. For all classification
tasks, we divide the training set into multiple batches and these
batches are made available sequentially. All the performance
evaluations reported here are an average of multiple rounds
of experiments. For scene classification, we use the proposed
split by [45] and in each round of an experiment, we form
batches of unlabelled data by randomly shuffling instances.
We also change the set of instances that are assigned with
wrong labels randomly in each round of an experiment. For
activity classification, 176 sequences (761 activities) are used
for training and other 153 sequences (661 activities) are used

for testing. In each round of an experiment, we assign wrong
labels to a randomly selected set of instances. For document
classification, we use 10-fold cross-validation and different
sets of instances are selected and assigned wrong labels in
each round of an experiment.

D. Noisy Label Detection Performance Analysis

In our proposed approach, we utilize context information to
detect noisy labels. The context information is encoded using
a graphical representation. For noisy label detection, we divide
the training set in multiple batches and use the instances from
a single batch to train an initial classification modelM and an
initial relationship model R. We consider the labels of these
instances are correct. In the testset, a fraction of the instances
is assigned with wrong labels, where the wrong labels are
generated synthetically. To detect the wrong labels in the
testset, we represent the instances from the testset graphically
as described in section IV-B. We utilize the trained models
and the graphical representations to calculate the dissimilarity
scores, where the dissimilarity score is an indicator of how
likely a label is wrong. The detection of a noisy label can
be considered as a binary classification problem and the
normalized dissimilarity score from Eqn. 7 can be treated
as the confidence score for this binary classification task.
To analyze the performance of this proposed approach, we
conduct the following experiments:
• We analyze the performance of CNLD for detecting wrong

labels when symmetric label noise is considered.
• We analyze the performance of CNLD for detecting wrong

labels when asymmetric label noise is considered.
To evaluate the performance of noisy label detection, we

use Type-I error (ER1), Type-II error (ER2), and Noise
Elimination Precision (NEP) as described in [9]. Type-I error
represents the percentage of correctly labeled instances that are
erroneously removed. Type-II error represents the percentage
of mislabeled instances which are not removed. Noise Elimi-
nation Precision measures the percentage of removed samples
that are actually mislabelled. The corresponding measures are:

ER1 =
# of correctly labelled instances which are removed

# of correctly labelled instances
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ER2 =
# of mislabelled instances which are not removed

# of mislabelled instances

NEP =
# of mislabeled instances which are removed

# of removed instances
Performance of CNLD for Symmetric Label Noise. Table I

illustrates the performance of CNLD for noisy label detection
task in symmetric noise scenario. In this experimental setup,
the noisy labels are generated synthetically using the Noisy
Completely at Random (NCAR) statistical model. We consider
symmetric noise where Ω fraction of each class of the testing
set samples are assigned with wrong labels and consider
Ω ∈ {0.10, 0.20, 0.30, 0.40, 0.50}. We compare our proposed
approach with majority voting [43], consensus voting [43], and
probabilistic approach [44]. Majority voting and consensus
voting approaches use multiple classifiers to detect noisy
labels. A label is detected as wrong if predictions of the
majority of the classifiers disagree with the assigned label in
the majority voting approach. Similarly, a label is detected
as wrong if predictions of all of the classifiers disagree with
the assigned label in the consensus voting approach. We use
logistic regression, SVM, and kNN as classifiers for both of
these approaches. All the classification models are learned
using the same initial batch of correctly labeled data. In the
probabilistic approach, the wrong labels are detected using
the mismatch of assigned labels with classifier prediction and
entropy of the class prediction.

In our experimental setup, we detect Ω fraction of the testing
set as wrong labels for all approaches and compute Type-
I error (ER1), Type-II error (ER2), and Noise Elimination
Precision (NEP) scores. Here, low ER1 and ER2 scores and
high NEP scores indicate better performance. For all three
application domains and different noise rate Ω, there is a
significant improvement in performance for our proposed ap-
proach. We observe a maximum of 26%, 5%, and 9% absolute
improvement in NEP scores in scene, activity, and document
dataset respectively. In the scene dataset, NEP scores for
majority voting and consensus voting approach are close to
the value of noise rate (Ω), indicating the inefficacy of the two
approaches for noisy label detection. Compared to the activity
and document dataset, we observe that the difference between
noisy label detection performance of the baseline approaches
and CNLD in the scene dataset is more significant. This is
because, the three compared noisy label detection approaches
solely rely on the performance of the learned classifiers, while
CNLD relies on both the classifier and the context information.
In the scene dataset, the learned classifier has less accuracy
compared to the activity and document dataset, resulting in
poor detection performance for the three compared approaches
while CNLD retains a good detection performance by utilizing
contextual information.

Performance of CNLD for Asymmetric Label Noise. Table
II illustrates the performance of CNLD for noisy label de-
tection task in an asymmetric noise scenario. We use the
Noisy at Random (NAR) model to generate asymmetric label
noise synthetically. The transition probabilities of the label
transition matrix Λ are calculated using k-means clustering.
For a dataset with n classes, we initialize n cluster centers,

TABLE II: Comparison of the performance of CNLD with
other approaches for the noisy label detection task in asym-
metric label noise scenario. We observe an improvement of
performance for our proposed CNLD in all three datasets.

Dataset Method ER1 ER2 NEP

Scene

Majority [43] 0.20 0.77 0.23
Consensus [43] 0.20 0.75 0.25

Probabilistic [44] 0.19 0.73 0.27
CNLD 0.17 0.63 0.37

Activity

Majority [43] 0.27 0.41 0.59
Consensus [43] 0.21 0.32 0.68

Probabilistic [44] 0.26 0.31 0.69
CNLD 0.16 0.24 0.76

Document

Majority [43] 0.24 0.41 0.59
Consensus [43] 0.21 0.36 0.64

Probabilistic [44] 0.18 0.30 0.70
CNLD 0.10 0.18 0.82

where each cluster center is the calculated average of features
from all the samples of a class. Then we use the assign-
ment step and update step to update the cluster centers until
convergence. We consider a cluster to be representative of a
particular class if it contains most samples from that class. If
a cluster represents class y, then we calculate the transition
probabilities P (Ỹ = ỹ|Y = y) based on the number of
samples that cluster contains from class ỹ. We obtain 10%,
7%, and 12% absolute improvement in NEP scores compared
to the best performing baseline approach in scene, activity, and
document dataset respectively. We observe that for asymmetric
label noise, the difference in performance between baseline
approaches and our proposed approach is large compared to
the symmetric noise scenario in activity classification and
document classification. This indicates that compared to other
approaches, CNLD is able to retain the detection performance
in the asymmetric case.

E. Classification Robustness Analysis

To analyze the performance of our proposed framework
for robust classification in an active learning setup, the entire
training set is divided into multiple batches. These batches
of data become available sequentially. We assume that all
the instances of the initial batch are correctly labeled and
data from other batches are unlabeled. The initial batch is
used to learn the initial classification modelM and the initial
relationship model R. When an unlabelled batch is available,
for each unlabeled batch of data, an informative subset of
instances is selected and queried for manual labeling. After ob-
taining the labels from an annotator, a fraction of the annotated
instances is randomly selected and assigned wrong labels. To
detect the incorrect labels, we represent the data graphically
as described in section IV-B and calculate the dissimilarity
scores. Following III-C, we discard the wrong labels and
incrementally update the models with detected correct labels.
We evaluate the classification performance on the same testing
set whenever the model is updated. We divide the scene and
document training set in 10 batches and the activity training
set in 9 batches. To analyze the performance of our proposed
framework, we conduct the following experiments:
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Fig. 3: Comparison of the classification performance of our proposed framework for active learning setup for three different
applications: scene classification, activity classification, and document classification. We compare our proposed framework
with two baseline approaches (SN, CL) and two noise-robust approaches (PB, IWMLR) for Ω = 0.40 and observe superior
performance in all three applications.
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Fig. 4: Analysis of the robustness of three different active learning approaches when combined with the proposed Context-
aware Noisy Label Detection (CNLD) framework for Ω = 0.40. The figures illustrate that in all three active learning strategies,
accuracy is higher when the active learning strategies are combined with CNLD.

• We compare the performance of our proposed active learn-
ing framework with two baseline approaches and two other
label noise-robust approaches for the classification task.

• We verify the robustness of different active learning strate-
gies combined with our proposed CNLD approach for the
classification task.

• We consider a similar incremental setup with pseudo label-
ing and analyze the impact of CNLD for robust learning.
Classification Performance Comparison. Figure 3 illus-

trates the classification performance of two baseline ap-
proaches and two other label noise-robust approaches com-
pared to our proposed approach. In this experimental setup,
we consider symmetric noise with Ω = 0.40 and synthetically
assign wrong labels on the queried samples using the NCAR
model. We compare our proposed method with the following
learning approaches:
� SN: In this approach, when the unlabelled batch of data

becomes available, the classification model is updated with
manually queried labels from the batch. Here, the queried
labels are noisy.

� PB: This is also an incremental learning approach. We use
the probabilistic approach as discussed in IV-D to detect
wrong labels of the queried samples from an unlabelled
batch of data and discard them. Then the classification

model is updated using the rest of the labels.
� CL: In this setup, we utilize the ground truth information of

which labels are wrong. The classification model is updated
by discarding the wrong labels. This approach represents the
upper bound of the classification performance.
� IWMLR: State-of-the-art non-deep learning noise resilient

method namely Importance Weighted Multinomial Logistic
Regression (IWMLR) [15]. Note that IWMLR is proposed
for multi-class learning when all the data are available. We
adapt it to active learning for proper comparison. When
updating a classification model, for each of the queried
labels, this method assigns a weight on the sample based on
the likelihood of the label is wrong. It enables the learning
on noisy data to more closely reflect the results on learning
noise-free data.

Note that we do not compare with the Multi-class Multi-
annotator Robust Gaussian Process (RGP) [14]. The reasons
for this are as follows. i) In the addressed dataset, Gaussian
Process Classification (GPC) performs poorly compared to
the parametric Multinomial Logistic Regression (MLR). In
all three applications, MLR trained with the labels from the
initial batch of data performs with higher accuracy compared
to GPC. ii) RGP is used in a multi-annotator setting and shown
to have a time complexity of O(n3) [57], which makes the
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Fig. 5: Comparison of classification performance with pseudo labels for three different applications: scene, activity, and
document classification. We analyse how pseudo labeling combined with CNLD can help improve performance.

approach not suitable for the addressed datasets. In PB and
CL approach, we discard the same number of labels as our
proposed approach to make a fair comparison.

For all three classification tasks, SN illustrates the nega-
tive consequence of label noise on the learning process. CL
illustrates the upper bound of the classification performance
by discarding the wrong labels. We do not observe much
improvement for IWMLR compared to SN for these datasets.
Compared to the scene classification task, PB performs better
than SN in both activity and document classification tasks.
This is apparent as the noisy label detection performance of
the probabilistic approach is better for activity and document
classification. However, the plots in Fig. 3 illustrate that during
the active learning process, our proposed method retains better
accuracy than other approaches for each stage of updating
the model with a new set of noisy labels. We provide the
performance comparison of our proposed approach with SN
for Ω ∈ {0.20, 0.30, 0.50} in the supplementary material.

Robustness of Different Active Learning Strategies. To
demonstrate that the proposed framework is independent
of the selection of an active learning strategy, we analyze
the robustness of different active learning techniques when
combined with CNLD. Figure 4 illustrates the robustness of
our proposed approach for different active learning strategies.
We select three commonly used active learning methods:
Entropy [3], Batch Rank [58], and CAAL [28]. For each of
the active learning approaches, we compare the performance
of the classifier when updated with noisy labels vs. when
updated with detected correct labels by CNLD. In Figure
4, the dotted lines refer to the classification performance
of different active learning strategies where the classifier
is updated with noisy labels. The solid lines in Figure 4
represent the classification performance when the active
learning approach is combined with CNLD. For all three
applications and for each of the active learning approaches,
frameworks combined with CNLD are more robust and result
in higher accuracy compared with their vanilla counterpart.

Pseudo Labeling We consider another incremental setup
where we update the models with manually queried labels
and pseudo labels. In this setup, the initial models are learned
using the initial set of data. When a new batch of data becomes
available, we select an informative set of samples and query

TABLE III: In this table, we report the improvement in
performance for our proposed approach over SN for dif-
ferent selection of β. We show the results for Ω ∈
{0.10, 0.20, 0.30, 0.40, 0.50} and for different β selection from
the set {0.80, 0.85, 0.90}.

Noise Accuracy improvement over SN
β = 0.80 β = 0.85 β = 0.90

Sc
en

e
Ω = 0.10 0.24 ± 0.47 0.03 ± 0.44 −0.29 ± 0.83
Ω = 0.20 0.36 ± 0.39 0.22 ± 0.71 0.06 ± 0.71
Ω = 0.30 1.02 ± 0.70 1.00 ± 0.61 1.51 ± 0.80
Ω = 0.40 1.93 ± 0.87 1.78 ± 0.90 1.65 ± 0.70
Ω = 0.50 1.99 ± 0.90 2.46 ± 1.13 3.81 ± 1.70

A
ct

iv
ity

Ω = 0.10 0.54 ± 0.53 0.62 ± 0.59 1.23 ± 0.72
Ω = 0.20 −0.05 ± 0.79 0.34 ± 0.60 0.26 ± 0.59
Ω = 0.30 1.21 ± 0.84 1.44 ± 1.03 2.43 ± 1.76
Ω = 0.40 1.68 ± 1.57 1.57 ± 1.02 3.45 ± 2.21
Ω = 0.50 1.50 ± 1.54 2.40 ± 1.60 4.25 ± 3.03

D
oc

um
en

t Ω = 0.10 1.09 ± 0.94 0.67 ± 0.82 1.43 ± 1.25
Ω = 0.20 1.13 ± 0.72 1.57 ± 0.85 1.76 ± 0.98
Ω = 0.30 3.18 ± 1.78 2.96 ± 1.64 4.06 ± 2.14
Ω = 0.40 3.04 ± 1.49 5.06 ± 2.71 5.55 ± 2.79
Ω = 0.50 3.72 ± 1.84 4.82 ± 2.32 6.51 ± 3.44

the labels. We consider these queried labels to be correct. We
also utilize the unlabelled data and update the classification
models with predicted labels of the unlabelled data, which
is called the pseudo labels. The generation of pseudo labels
is classifier dependent and can contain a lot of noise. Here,
the generation of noise is feature dependent and more closely
reflects the real noise scenario. So while updating models with
pseudo labels, we use CNLD to detect the wrong labels and
filter them. In this experimental setup, we use three learning
approaches and compare their performance:

• Manual: In this approach, when an unlabelled batch of
data is available, we update the models with only manually
queried correct labels.

• Manual + Pseudo: In this approach, when an unlabelled
batch of data is available, we update the models with
manually queried correct labels and generated pseudo labels
from the rest of the unlabelled data of that batch. Here, the
pseudo labels are generated using the current classification
model.

• Manual + Pseudo + CNLD: Similar to the setup of Manual
+ Pseudo. Additionally, we consider utilizing CNLD to
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identify pseudo labels that are wrong. Then the model is
updated with manually queried correct labels and pseudo
labels that are detected as correct.
Figure 5 illustrates the performance comparison of the

above-mentioned learning approaches. In the scene classifi-
cation task, the model updated with manually correct labels
(Manual) performs best. This is because the accuracy of the
learned classifier is low and generates a lot of wrong labels,
which eventually degrade the classification performance if
used for updating the model. However, compared to using
pseudo labels directly (Manual + Pseudo), there is an improve-
ment in performance if we filter wrong pseudo labels using
CNLD (Manual + Pseudo + CNLD). In activity and document
classification task, Manual performs better than Manual +
Pseudo. However, in both classification tasks, performance
of the filtered pseudo labeling approach (Manual + Pseudo
+ CNLD) is superior to Manual and Manual + Pseudo.
β Parameter Sensitivity Analysis. The selection of β pa-

rameter is a trade-off between precision and recall for noisy
label detection. A process with high precision may not be
able to detect a lot of incorrect labels. On the other hand,
a process with high recall will detect a lot of correct labels
as wrong. In both cases, the performance of a classification
model will degrade. As a result, our approach requires to
select β in a way to balance between these two conditions.
In Table III, we analyze the performance of the classification
model for a wide range of selection of β. For noise rate
Ω ∈ {0.10, 0.20, 0.30, 0.40, 0.50} and β ∈ {0.80, 0.85, 0.90},
we report the absolute classification accuracy improvement of
our proposed approach over the baseline SN approach. We
compute the average of the difference of accuracy of our pro-
posed approach and SN approach in each incremental update
and also report the standard deviations. We observe that for a
wide range of selection of β, our approach gains a performance
improvement over learning with noisy labels. Improvement
of performance is not significant for a low noise rate (Ω ∈
{0.10, 0.20}). It is expected because a small number of noisy
labels do not degrade the classification performance much.
For Ω ∈ {0.30, 0.40, 0.50}, there is 1% − 3.81% absolute
accuracy improvement in scene classification, 1.21%− 4.25%
absolute accuracy improvement in activity classification, and
3.18% − 6.51% absolute accuracy improvement in document
classification for different β selection.

F. Qualitative Results

We provide two qualitative examples from the MIT-67 In-
door dataset for the noisy label detection task in Figure 6. The
graphical representation is constructed using the objects that
are detected by an off-the-shelf object detector. Then we utilize
the graphical representation and the prior relational informa-
tion to compute the dissimilarity scores. A high dissimilarity
score indicates the label is likely to be wrong, while a low
dissimilarity score indicates the label is correct. For example,
when the top image in Figure 6 is labeled as ‘kitchen’ scene,
the contextual relation formed with object labels and a scene
label will be consistent with previously learned contextual
relation. As a result, the dissimilarity score is low for ‘kitchen’

Fig. 6: Example illustration of the performance of noisy
label detection. The dissimilarity score is minimum when the
first image is labeled with the correct scene class ‘kitchen’.
Similarly, the dissimilarity score for the second image is
minimum when the image is assigned with the ‘airport’ scene
class.

class. If the image is assigned with any other label except
for ‘kitchen’, there will be a contextual inconsistency and the
dissimilarity score will be high. Similarly, for ‘airport’ indoor
image, for ‘airport’ label the dissimilarity score is low while
for other assigned labels, the dissimilarity score is high.

V. CONCLUSION

In this paper, we formalize a general active learning
framework that utilizes a noisy label filtering based learning
approach to reduce the adverse impact of label noise. In
this regard, we propose a novel context-aware noisy label
detection strategy. For various applications, we show how we
can represent the inter-relationship among the data and using
that representation, infer the likelihood of a label being noisy.
The proposed noisy label robust framework is independent of
a particular choice of feature, classifier, and active selection
strategy. We experimentally validate the robustness of the
active learning approach in the presence of label noise.

ACKNOWLEDGMENT

The work was partially supported by ONR grant N00014-
12-C-5113 and NSF grant 1901379

REFERENCES

[1] X. Li and Y. Guo, “Multi-level adaptive active learning for scene
classification,” in European Conference on Computer Vision. Springer,
2014, pp. 234–249.

[2] B. Settles, “Active learning,” Morgan & Claypool, 2012.
[3] X. Li and Y. Guo, “Adaptive active learning for image classification,” in

IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE, 2013, pp. 859–866.

[4] N. V. Cuong, W. S. Lee, N. Ye, K. M. A. Chai, and H. L. Chieu, “Active
learning for probabilistic hypotheses using the maximum gibbs error
criterion,” in Advances in Neural Information Processing Systems(NIPS),
2013, pp. 1457–1465.



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL.XX, NO.XX, XXX 2020 11
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